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Abstract

Here we report that prioritizing sites in order of rarity-weighted richness (RWR) is a simple,
reliable way to identify sites that represent all species in the fewest number of sites (mini-
mum set problem) or to identify sites that represent the largest number of species within a
given number of sites (maximum coverage problem). We compared the number of species
represented in sites prioritized by RWR to numbers of species represented in sites priori-
tized by the Zonation software package for 11 datasets in which the size of individual plan-
ning units (sites) ranged from <1 ha to 2,500 km?. On average, RWR solutions were more
efficient than Zonation solutions. Integer programming remains the only guaranteed way
find an optimal solution, and heuristic algorithms remain superior for conservation prioritiza-
tions that consider compactness and multiple near-optimal solutions in addition to species
representation. But because RWR can be implemented easily and quickly in R or a spread-
sheet, it is an attractive alternative to integer programming or heuristic algorithms in some
conservation prioritization contexts.

Introduction

In conservation planning, the minimum set problem [1] is to identify a set of sites (individual
planning units) within a planning area that represent all conservation targets (typically species)
in the fewest number of sites. It is closely related to the maximum coverage problem, which is
to represent the largest number of species in a given number of sites. Both problems emphasize
efficiency; the minimum set problem is appropriate for comprehensive long-term plans where-
as maximum coverage is appropriate for short-term plans when resources are insufficient to
meet all targets. A set of sites that satisfies or nearly satisfies a minimum set or maximum cov-
erage problem is referred to as a “solution.” For over 30 years, conservation biologist have
known that selecting sites in order of species richness provides poor solutions [2,3,4]. A good
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solution is not a set of richest sites, but a set of sites whose species assemblages complement
each other and collectively capture the largest number of species. Three approaches are avail-
able to identify complementary sites that meet minimum set and maximum

coverage problems.

Integer programming is the only method that can be guaranteed to identify optimum solu-
tions [5]. However, there are 2 main reasons why integer programming is not widely used for
these problems. First, for problems involving more than a few hundred sites, the number of
possible combinations increases to astronomical numbers, and computing time can become
prohibitively long. Second, integer programming often requires major oversimplification of the
problem, such that integer programming provides an exact solution to an oversimplified prob-
lem statement [6].

Two heuristic algorithms are commonly used to solve minimum set and maximum coverage
problems, namely the reverse stepwise search in the software package Zonation [7], and simu-
lated annealing, typically implemented in the software package Marxan [8]. Although these al-
gorithms produce solutions that cannot be guaranteed to be optimum, they consistently yield
near-optimal solutions [6]. These algorithms are popular because of their computing speed,
their ability to reflect goals other than species representation (e.g., compactness), and their abil-
ity to provide divergent solutions that provide flexibility for decision-makers. Nonetheless, im-
plementing these heuristic algorithms requires considerable data pre-processing and model
calibration, e.g., [7, 8]. It would be useful to have a simple, reliable alternative to integer pro-
gramming and heuristic algorithms.

One intuitively appealing alternative is to assemble solutions in order of rarity-weighted
richness, RWR. Williams et al. [9] proposed that the rarity value of a species can be character-
ized by the inverse of the number of sites or planning units in which it occurs. Thus if a species
is found in only 1 site, the species would have the maximum rarity score of 1/1 = 1, and a spe-
cies that occurs in 20 sites would have a rarity score of 1/20 = 0.05. Williams et al. also proposed
that the rarity scores of all species in the site can be summed to yield a single RWR value for
the site:

n

Z(l/ci)

1

where ¢; is the number of sites occupied by species i, and the values are summed for the n spe-
cies that occur in that site.

For one dataset of 426 vertebrate species mapped across 441 sites in Oregon, Csuti et al. [3]
found that sites chosen in order of RWR represented species almost as effectively as optimum
sets of sites identified by linear programming, and slightly more effectively than sites selected
by simulated annealing. Csuti et al. suggested that the near-optimality, speed and simplicity of
RWR made it suitable for prioritizing sites in large datasets. Despite this recommendation,
RWR is rarely used in the academic literature, although it has occasionally been used to pro-
duce prioritization maps, most notably by Chaplin et al. [10], NatureServe [11], and California
Department of Fish & Wildlife [12]. To the best of our knowledge, Csuti et al. provided the
only comparison of RWR solutions to solutions produced by linear programming or heuristic
algorithms. Perhaps additional positive results would increase the use of RWR to solve mini-
mum set and maximum coverage problems.

In this paper we demonstrate that across 11 datasets, RWR represented species as efficiently
as sites selected by the reverse stepwise algorithm used in the core-area version of Zonation [7].
Our goals are to call attention to RWR as a useful tool across a spectrum of spatial scales and to
encourage wider consideration of RWR by conservation biologists.
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Instead of (or in addition to) comparing RWR to the heuristic algorithm in Zonation, we
could have compared RWR solutions to those produced by simulated annealing in Marxan.
We chose to consider only Zonation because it is simpler to implement, and because the two
packages produce similar results [13].

Methods
Datasets

We selected 7 plant datasets and 4 bird datasets that spanned 211 to 1456 species, 230 to >
85,000 sites, and site sizes from <1 ha to 2,500 km? (Table 1). Datasets included both inventory
and atlas data. Although atlas data include false absences, the atlas datasets for Western Eu-
rope, UK, and Spain are among the world’s most exhaustive atlas datasets on a consistent grid
(Table 1 footnotes). In any event, false absences lead to conservative estimates of the effective-
ness of shortcuts such as RWR [14].

Calculating number of species in sites prioritized in order of RWR

For each dataset, we calculated RWR for each site. We then accumulated the 5%, 10%, 15%,. . .
60% of sites with the highest RWR values. We stopped at 60% because RWR represented
99-100% of the total number of species in each dataset by this point. At each 5% percentile of
prioritized sites, we calculated S, the number of species represented at least once in that set

of sites.

Calculating number of species in sites prioritized by Zonation

For each dataset, we used the basic core area formulation of the Zonation reserve selection soft-
ware [7] to rank sites in terms of their importance to species representation. To produce a hier-
archical prioritization of sites, Zonation starts with all sites tentatively ‘reserved’ and iteratively
removes sites that are least needed to retain at least a few occurrences of each species. The algo-
rithm minimizes the impact to the “worst-off” species, i.e., the species with the smallest re-
maining number of sites. Thus if the worst-off species occurs in only 4 sites, Zonation would
not remove any of those 4 sites from the solution until it would be impossible to remove a site
without causing 1 or more species to have fewer than 4 sites in the tentative solution. At that
point Zonation would remove the site that causes the smallest number of species to be confined
to 3 remaining sites. Sites receive a score between 0 and 1; values close to one indicate sites re-
moved in the last state of the process whereas values close to 0 indicate sites removed early.

For the top 5%, 10%, 15%,. .. 60% of sites (as ranked by Zonation) we calculated Z, the
number of species represented at least once. In many maximum coverage problems, Z is used
as an estimate of the optimum or maximum number of species that can be represented in a
given number of sites [4,7].

Assessing RWR efficiency relative to Zonation and random selection of
sites

We accumulated sites in random order and at each 5% increment (as above) we calculated the
number of species represented at least once in the randomly selected sites. We repeated the
random selection procedure 1,000 times and calculated R (the mean number of species across
1000 runs) and the 95% CI of R at each 5% increment.

Finally, we plotted S, Z, R, and the 95% CI of R against the percent of sites selected, and
compared S and Z as follows. We considered S-R an measure of how much RWR improved on
random selection of sites, Z-R a measure of how much Zonation improved on random
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Table 1. Datasets used to evaluate how well rarity-weighted richness selects sites that efficiently represent species.

Taxon, geographic area # Sites Size of each site # Species Type of dataset’
Plants, Sequoya-Kings Canyon National Park, USA® 545 <1ha 854 Inventory
Plants, Shenandoah National Park, USA? 351 <1ha 728 Inventory
Plants, Chiapas, Mexico [15] 230 <1ha 258 Inventory
Plants, Sierra Nevada, Spain [16] 595 4 ha 255 Inventory
Trees & shrubs, Spain® 85,474 1 km? 237 Atlas
Birds, Arizona, USA [17] 1,317 ~6 km? 359 Inventory
Plants, UK* [18] 2,242 100 km? 1,456 Atlas
Birds, Spain® [19] 5,301 100 km? 294 Atlas
Birds, Florida, USA® 1,028 ~196 km? 211 Atlas
Plants, Zimbabwe” 360 625 km? 1,338 Atlas
Birds, Western and Central Europe® [20] 2,195 2,500 km? 424 Atlas

Datasets are listed in order of size of sites.

"In each inventory dataset, an attempt was made to inventory all species at each site. In each atlas dataset, each site was a grid cell, and the data
consisted of all species records in the cell.

2 US National Park Service Inventory Products http:/science.nature.nps.gov/im/inventory/veg/products.cfm (accessed 20 June 2014)

3 Ministry of Agriculture Food and Environment of Spain. Third National Forest Inventory; over 540,000 occurrences, 1997—-2006. http://www.gbif.org/
dataset/fab4c599-802a-4bfc-8a59-fc7515001bfa

4 over 9 million records.

5 410,973 records.

© Florida's breeding bird atlas: A collaborative study of Florida's birdlife. http://myfwc.com/bba (accessed 12 March 2014).

7 Data from http://www.gbif.org/dataset/1881d048-04f9-4bc2-b7¢8-931d1659a354; 6316 records for Zimbabwe.

8 >100,000 records, covering areas west of Russia, Belarus, and Ukraine.

doi:10.1371/journal.pone.0119905.t001

selection of sites, and (S-R)/(Z-R) as an index of the improvement offered by RWR relative to
the improvement offered by Zonation. The ratio (S-R)/(Z-R) is identical to the Species Accu-
mulation Index, SAI, of Rodrigues & Brooks [14]. A value of 0.95 would indicate that RWR is
95% as effective as Zonation in improving on random selection of sites. A value of 1.0 would
indicate that RWR is as effective as Zonation (and therefore a reasonable estimate of an optimal
solution), and value of 1.05 would indicate that the RWR solution was 5% more effective than
Zonation in improving on random selection of sites.

Results

For all 11 datasets and all percentages of sites prioritized, RWR and Zonation solutions repre-
sented many more species than the same number of randomly-selected sites (Fig. 1). On aver-
age across all datasets and percentages of sites prioritized, RWR solutions were 4% more
effective than Zonation solutions in improving on random selection of sites (Table 2). In 43 in-
stances, RWR solutions were better (closer to the true optimum) than Zonation (Fig. 1,

Table 2). In 30 instances, Zonation provided better solutions than RWR. In the other 59
instances, RWR and Zonation solutions represented the same number of species.

Discussion

We conclude that the number of species in sites assembled in RWR rank order can be used as
an estimate of the maximum number of species that can be represented in a given number of
sites, or to estimate the minimum number of sites needed to represent all species. For the 11
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Fig 1. Number of species, S, represented at least once in sites selected in order of rarity-weighted richness and number of species, Z, represented
at least once in sites selected by Zonation, compared to the number of species, R, represented in an equal number of randomly-selected sites. SAI
is (S-R)/(Z-R), and describes the effectiveness of rarity-weighted richness to that of Zonation in terms of their ability to improve on random selection of sites.

doi:10.1371/journal.pone.0119905.9001

datasets we analyzed, RWR solutions were about as efficient, and sometimes more efficient,

than Zonation solutions. Similarly, Csuti et al. [3] found that RWR performed slightly better
than simulated annealing. Because simulated annealing and Zonation are known to produce

optimum or near-optimum solutions [6], RWR must also be producing optimum or near-

optimum solutions. In all datasets, RWR represented 99-100% of the total number of species
at most percentages of sites selected, leaving little room for superior solutions. Our results dem-
onstrate that RWR’s ability to identify sites that efficiently represented Oregon vertebrates [3]
was not a quirk of their particular taxonomic group, site size, or study area. RWR appears to be

a simple, reliable alternative to heuristic algorithms for solving minimum set and maximum

coverage problems.
The main advantage of RWR over linear programming and heuristic algorithms is that no

specialized software, programming experience, or analytic skill is required. All calculations can

be completed in R or in a spreadsheet. Although our evaluations used a uniform target of 1 oc-

currence per species, RWR can accommodate higher (more conservation-relevant) targets.
We acknowledge that RWR cannot replace linear programming, which remains the only

procedure that can be guaranteed to find optimal solutions for these problems. RWR also can-
not replace Marxan or Zonation, which (unlike RWR) can (a) include goals for compactness
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Table 2. Species Accumulation Index, SAl, for sites prioritized in order of rarity-weighted richness (RWR) compared to sites prioritized by
Zonation, for the 11 datasets described in Table 1.

Target Plants, Plants, Plants, Plants, Trees & Birds, Plants, Birds, Birds, Plants, Birds,
(% of Sequoia- Shenandoah Chiapas Sierra shrubs, Arizona UK Spain Florida Zimbabwe Western
sites) Kings NP NP Nevada, Spain Europe
Spain
5% 1.36 1.72 2.79 1.25 1.00 0.89 0.90 1.00 0.85 1.00 1.00
10% 1.51 1.78 1.51 0.93 1.00 0.95 0.96 1.00 0.96 1.00 1.00
15% 1.38 1.47 1.01 0.94 1.00 0.97 0.99 1.00 1.00 1.00 1.05
20% 1.05 1.24 0.82 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.07
25% 0.96 1.11 0.84 1.02 1.00 1.00 1.01 1.00 1.00 1.00 1.08
30% 0.84 0.97 0.92 1.02 1.00 1.00 1.02 1.00 1.00 1.00 1.10
35% 0.86 0.80 0.95 1.02 1.00 1.00 1.02 1.00 1.00 1.00 1.11
40% 0.92 0.82 0.96 1.02 1.00 1.00 1.02 1.00 1.00 1.00 1.14
45% 0.95 0.89 1.04 1.03 1.00 1.00 1.03 1.00 1.00 1.00 1.16
50% 0.98 0.93 1.05 1.03 1.00 1.00 1.03 1.00 1.00 1.00 1.19
55% 0.98 0.96 1.09 1.04 1.00 1.00 1.04 1.00 1.00 1.00 1.23
60% 0.99 1.00 1.10 1.04 1.00 1.00 1.05 1.00 1.00 1.00 1.28
Mean' 1.06 1.14 1.17 1.03 1.00 0.98 1.01 1.00 0.98 1.00 1.12

SAl describes how well RWR improves on random selection of sites relative to how well Zonation improves on random selection of sites, where the goal is
to represent each species at least once. An SAI of 0.95 indicates that RWR is 95% as effective as Zonation in improving on random selection of sites,
whereas an SAl of 1.05 indicates that RWR is 105% as effective as Zonation.

' Grand mean is 1.04.

doi:10.1371/journal.pone.0119905.t002

and connectivity, and (b) generate several near-optimal alternatives that provide flexible op-
tions for achieving conservation goals.

RWR is a simple metric that can be useful for at least 3 types of minimum set and maximum
coverage problems. First, RWR is ideally suited to estimate O, one of the two benchmarks used
in tests of surrogacy. Species Accumulation Index (SAI), the standard metric used to evaluate
and compare surrogate strategies [14], compares S, the number of species represented at least
once in a specified number of sites prioritized by the surrogate to two benchmarks: R, the mean
number of species represented at least once in the same number of randomly selected sites and
O, the largest number of species that can be represented at least once in that number of sites.
As mentioned in the previous paragraph, real-world site selection often involves compactness,
connectivity, species-specific levels of representation, and diversity of near-optimal solutions.
However, these considerations are ignored in surrogacy tests, for which an arbitrary 1 occur-
rence per species provides a simple, repeatable criterion for representing each species. As dem-
onstrated here, RWR can simplify the calculation of O, and thus streamline the testing
of surrogates.

Second, RWR can provide a first approximation of priority areas for meeting the goal of
representing all species. For example, Chaplin et al. [10] and CDFW [12] used RWR to map
areas that would efficiently represent rare species in the coterminous USA, and in California,
respectively. In both cases, the authors felt that RWR made good use of occurrence data that
were too sparse to support reliable species distribution models. Third, RWR can be used to as-
sess the efficiency of a set of existing or proposed protected sites. If most high-RWR sites lie
outside of protected sites, planners could conduct further analyses to determine if particular
species in the unprotected RWR hotspots are in need of additional protection.
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